Utility Services Poverty: Addressing the Problem of Household Resource Services Deprivation in Mayotte

OLIVIA RICCI, DOROTHÉE CHARLIER & BÉRANGÈRE LEGENDRE

OLIVIA.RICCI@UNIV-REUNION.FR: UNIVERSITE DE LA RÉUNION. CEMOI

Le journal de Mayotte

Mayotte : la vie misérable à Kawéni. plus grand bidonville de France. L'OBS. 14/05/2018

- Les habitats de fortune représente 33% du parc de logement
- 6 logements sur 10 n'ont pas d'installations sanitaires de base (toilettes, douche, accès à l'eau)
- 77% de la population vit sous le seuil de pauvreté

Mayotte la 1^{ère}. 01/07/2020

A few days after the start of confinement, the regional health agency decided to facilitate access to standpipes for the most precarious populations, but also to install water distribution ramps.

Mayotte hebdo 2020

1/3 de la population n'a pas accès à l'eau.20% n'ont pas accès à l'électricité

Le Monde, 2019

Introduction	Data	LC Méthodology	Results and policy	Conclusion
			implications	

Motivation

Goals for development (United Nations, PNUD)

Goal 6 : Ensure availability and sustainable management of water and sanitation for all

46% of individuals, 3,6 billions, lack safety management sanitation,29% lack basic hygiene,26% lack safely managed drinking water

Goal 7: Ensure access to affordable, reliable, sustainable and modern energy for all

One third of population use dangerous and ineficient cooking system 759 million people lack access to electricity, annuel energy efficiency improvement rate is equal to 3% and needs acceleration)

Introduction	Data	LC Méthodology	Results and policy	Conclusion
			implications	

Theoretical background

As Energy and water are essential needs \rightarrow relevant to broaden the concept of fuel and water poverty to also address the issue of access to basic utilities.

Generally fuel poverty and water poverty are treated independently. While there is an abundant literature on fuel poverty since the 1980's the concept of water poverty is more recent and largely inspired by the definitions and measures of fuel poverty

- Water poverty: The concept of 'water poverty' has been developed in 2000 to consider both a lack of access to clean water and sanitation and the cost of consuming. (Salameh, 2000; Feitelson and Chenoweth, 2002)
- **Fuel and energy poverty:** The concept of fuel poverty refers to difficulties in satisfying a set of essential energy services in housing. While there is a large body of literature on measuring fuel poverty, there is no consensus on either a common definition or fuel poverty indicators

Theoretical background

Fuel and energy poverty:

However, the recent academic literature has begun to highlight the need for a unified theoretical framework for analyzing fuel poverty based on Sen's work on *Capabilities*.

Day et al. (2016) defined Energy Poverty as "an inability to realize essential capabilities as a direct or indirect result of insufficient access to affordable, reliable and safe energy services, and taking into account available reasonable alternative means of realizing these capabilities"

Fuel poverty and water poverty together?

Few studies have treated fuel and water poverty together (Martin et al., 2019; Yoone *et al.*, 2019; Fankhauser and Tepic, 2007; Browne *et al.*, 2018, Laskari *et al.*, 2016). Some of the studies addressed partially the fuel and water poverty focussing mainly on the affordability issue related to water and fuel poverty (Fankhauser and Tepic (2007).

Finally, energy and water are essential utility services for a decent life. These services are extremely linked, why shouldn't we treat them together?

In this paper we propose to enlarge the concept of fuel and water poverty to essential utility services poverty.

Introduction	Data	LC Méthodology	Results and policy implications	Conclusion
	. •			

In this paper, we want to define and characterize the concept of utility services poverty in Mayotte

Main objectives of the paper:

DEFINE UTILITY SERVICE POVERTY AND IDENTIFY UTILITY SERVICES POOR HOUSEHOLDS

1- A definiton of the new concept of utility services poverty

2- Identify utility services poor households → Latent class Model

3- Propose a scale of vulnerability to better target policies (maybe it s not a binary phenomenon)

4- Provide evidence that utility services poors are not necessary monetary poors

Introduction	Data	LC Méthodology	Results and policy	Conclusion
			implications	

Definition of utility services poverty

We propose a definition of utility services poverty based on the capabilities framework developed by Amartya Sen and Martha Nussbaum (Nussbaum, 2003; 2011; 1999; 2003; 2004; 2012; Nussbaumer, Bazilian, & Modi, 2012; Sen, 1979) and the work of Day *et al.* (2016)

The capability approach developed by Sen considers human life as a set of doings and beings termed **functionings.** The **capability** of a person is a derived notion that reflects the combination of functionings and the freedom to choose a way of life. According to Sen, poverty can be seen as not having the **capability to achieve crucial and valued functionings**.

The relevant literature on utility services access and affordability suggests that basic utility services, particularly potable water, improved sanitation and electricity, can impact human health, education, social interactions and women conditions (Njoh *et al.,* 2019; Martin *et al.,* 2019; Howarth *et al.,* 2001).

Definition of utility services poverty

Utility services poverty definition

"the inability to realise essential functionnings due to difficulties in satisfying a set of essential utility services in housing"

Introduction	Data	LC Méthodology	Results and policy implications	Conclusion
Data				

« Enquête Logement Mayotte 2013 » - 2058 households

Module a little different from the one in the French metropole \rightarrow specific questions about housing conditions + materials for walls, roof and floors + access to electricity and water

To measure income poverty the local poverty rate at 60% of the median living standard

Introduction	Data	LC Méthodology	Results and policy	Conclusion
			implications	

Descriptive statistics

	N	Mean	SD	Min	Max
		Utility Services			
Cooling system	2058	0.169	0.375	0	1
Water access	2058	0.741	0.438	0	1
Bathroom	2058	0.436	0.496	0	1
Electricity access	2058	0.943	0.233	0	1
Toilet	2058	0.409	0.492	0	1
Kitchen	2058	0.713	0.452	0	1
Energy for cooking:					
Coal & Wood	2058	0.099	0.299	0	1
Butane	2058	0.746	0.435	0	1
Electricity	2058	0.124	0.33	0	1
Oil	2058	0.191	0.394	0	1
		Monetary Poverty	1		
Income	2058	7050.982	9719.735	0	94125
Monetary poor 60%	2058	0.365	0.482	0	1
Monetary poor 50%	2058	0.325	0.468	0	1

Introduction	Data	LC Méthodology	Results and policy	Conclusion
			implications	

Descriptive statistics

Comparing utility services poverty and monetary poverty :

- Poor households also appear more satisfied with their housing conditions (**43,1% of poors** have a positive perceived situation of their dwelling condition **against 22,3% of non poors**).
- No differences between poors and no poors according to housing conditions

		Monetary poor 60%			
	Sample means (n=2058)	No Poor (n=1307)		Poor (n=751)
	%	%	Obs	%	Obs
				Dwelling car	acteristics
Humidity			1026		334
Yes	24.5	25	256	23.1	77
Νο	75.5	75	770	77	257
Cooling system			1307		751
Yes. entire dwelling	3.3	4.7	62	0.7	5
Yes. just a room	13.6	20.4	266	2.0	15
Νο	83.1	74.9	979	97.3	731

Introduction	Data	LC Méthodology	Results and policy	Conclusion
			implications	

Descriptive statistics

		Monetary poor 60%				
	Sample means (n=2058)	No Poor (n=1307)		Poor (n=751)		
				Cooking f	acilities	
Having a place for cooking			1307		751	
Yes	71.3	49.7	1023	21.6	445	
Νο	28.7	13.8	284	14.9	306	
Energy for cooking			1307		751	
Butane, propane, tanker	74.6	85	1111	56.5	424	
Oil	19.1	10.7	140	33.8	254	
Electricity	12.4	15.1	197	7.7	58	
Wood	7.4	2.8	36	15.6	117	
Coal	2.9	3.3	43	2.1	16	

Introduction	Data	LC Méthodology	Results and policy	Conclusion
			implications	

		M	onetary p	oor 60%	
	Sample means (n=2058)	No Poor (n=	1307)	Poor (n=751	.)
	%	%	Obs	%	Obs
	Access to wa	iter and sanitary	y facilities		
Access to water			1307		751
Yes	74.2	85.5	1117	54.5	409
Νο	25.8	14.5	190	45.5	342
The individual has a bathroom (shower, bath)			1307		751
Yes	43.6	57.1	746	20.2	152
Νο	56.4	42.9	561	79.8	599
Household has a toilet in their home			1307		751
Yes. inside	24.3	54.9	717	16.5	124
No. outside	16.6	31.5	412	53.7	403
Νο	39.6	13.6	178	29.8	224
	Access to ele	ectricity			
Electricity access			1307		751
Yes	74.3	83.1	836	64.6	485
Yes. connected to another home's meter	18.7	13.2	133	24.6	185
Νο	7.00	3.7	37	10.8	81

Introduction	Data	LC Méthodology	Results and policy	Conclusion
			implications	

Class latent model

Objective: to identify household profiles (Lazarsfeld and Henry, 1968). But, the dependent variable here, "utility poverty variable" assumed discrete and unobservable, and, the latent class methodology let to categorized observations into latent classes using observed variables or indicators (Goodman, 2002).

The Latent class model is estimated by the maximization of the log-likelihood through an expectation-maximization (EM) algorithm

Introduction	Data	LC Méthodology	Results and policy	Conclusion
			implications	

Models comparison

	AIC	BIC	LL	df
2 classes	10219.24	10292.42	-5096.619	13
3 classes	10009.43	10110.76	-4986.714	18
4 classes	9981.925	10117.03	-4966.962	24

3 is better to 2 classes model

3 or 4 → meaning of adding an additional class?

Steps of analysis :

- Model with 2 classes (benchmark) to ensure the quality of the model
- Model with 3 classes → Some vulnerable households ?
- Model with 4 classes Differentiated vulnerable household profiles in services utility ? Differentiated policies?

Introduction	Data	LC Méthodology	Results and policy	Conclusion
			implications	

Results – 2 Classes (benchmark)

	Class 1 Utilit	y services p	oor	Class 2 Utility	services -su	fficient
	43.4%			56.6%		
	Coeff.	Std. Frr	Margin	Coeff	Std. Err.	Margin
0.No access to water	base outcom	е	0.4568	base outcome	2	9.07e-12
1.Access to water	0.173	(0.068)**	0.5432	25.426	(0.965)***	1
0. No access to electricity	base outcom	е	0.1013	base outcome	2	3.84e-08
1.Access to electricity	2.183ª	(0.100)***	0.8987	17.075	(7.607)**	1
0.No cooling system	base outcom	е	0.9924	base outcome	2	.06204
1.Cooling system	-4.873	(0.415)***	0.0076	-0.491	(0.076)***	0.3796
0.No bathroom	base outcom	е	0.9313	base outcome	2	0.0843
1.Bathroom	-2.607	(0.187)***	0.0687	2.384	(0.144)***	0.9156
0.No toilet	base outcom	е	0.9678	base outcome	2	0.1007
1.Toilet	-3.402	(0.207)***	0.0322	2.190	(0.186)***	0.8993
0.No kitchen facility	base outcom	е	0.4629	base outcome	2	0.0569
1.Kitchen facilities	0.149	(0.060)***	0.5371	2.807	(0.179)***	0.9430
Observations	2.058					

Robust standard errors are presented in parentheses; *** p < 0.01. ** p < 0.05. * p < 0.1Note: "The probability of being in Class 1 increases if households have electricity access compared with those without electricity access.

Introduction	Data	LC Méthodology	Results and policy	Conclusion
			implications	

Results – 2 Classes (benchmark)

	Class 1 Utility	services po	or	Class 2 Ut	ility services	-sufficient
	43.4%			56.6%		
	Coeff.	Std. Err.	Margin	Coeff.	Std. Err.	Margin
0.No access to water	base outcome	2	0.4568			
1.Access to water	0.173	(0.068)**	0.5432			
0. No access to electricity	base outcome	9	0.1013			
1.Access to electricity	2.183ª	(0.100)***	0.8987			
0.No cooling system	base outcome	2	0.9924			
1.Cooling system	-4.873	(0.415)***	0.0076			
0.No bathroom	base outcome	2	0.9313			
1.Bathroom	-2.607	(0.187)***	0.0687			
0.No toilet	base outcome	9	0.9678			
1.Toilet	-3.402	(0.207)***	0.0322			
0.No kitchen facility	base outcome	9	0.4629			
1.Kitchen facilities	0.149	(0.060)***	0.5371			
Observations	2.058					

Profile of fuel poors :

- Less access to water, electricity but main variables are :
- No Cooling system
- No Bathroom
- No Toilet

Robust standard errors are presented in parentheses; *** p < 0.01. ** p < 0.05. * p < 0.1Note: "The probability of being in Class 1 increases if households have electricity access compared with those without electricity access."

18

Introduction	Data	LC Méthodology	Results and policy	Conclusion
			implications	

Results – 2 Classes (benchmark)

	Class 1	Utility servio	ces poor	Class 2 FUtility	services -su	ficient	
	43.4%			56.6%			
	Coeff.	Std. Err.	Margin	Coeff.	Std. Err.	Margin	Profile
0.No access to water				base outcome		9.07e-12	- Acc
1.Access to water	0.173			25.426	(0.965)***	1	- Acc
0. No access to electricity				base outcome		3.84e-08	- Mo
1.Access to electricity	2.183ª			17.075	(7.607)**	1	- Mc
0.No cooling system				base outcome		.06204	- Mc
1.Cooling system	-4.873			-0.491	(0.076)***	0.3796	
0.No bathroom				base outcome		0.0843	- IVIC
1.Bathroom	-2.607			2.384	(0.144)***	0.9156	
0.No toilet				base outcome		0.1007	
1.Toilet	-3.402			2.190	(0.186)***	0.8993	
0.No kitchen facility				base outcome		0.0569	
1.Kitchen facilities	0.149			2.807	(0.179)***	0.9430	
Observations							

Profile of Fuel-sufficient :

- Access to hot water
- Access to electricity
- More cooling system
- More bathroom
- More toilet
- More kitchen facilities

Robust standard errors are presented in parentheses; *** p < 0.01. ** p < 0.05. * p < 0.1Note: "The probability of being in Class 1 increases if households have electricity access compared with those without electricity access."

Introduction	Data	LC Méthodology	Results and policy	Conclusion
			implications	

Results – 3 classes

	Class 1 Utility services poor 27,8 %		or Class 2 Utility services vulnerable		ervices e	Class 3 Utility services - sufficient			
					37.4 %			3 9,8 %	
	Coeff.		Margin			Margin			Margin
lo access to water	base ou								
Access to water	-2.368	(1.345)*	0.0857	4.377		0.9876	6.661	(1.080)***	0.9987
No access to electricity	base ou								
Access to electricity	1.482	(0.114)***	0.8149	4.088	(1.269)***	0.9835		(2.833)**	0.9985
lo cooling system	base ou								
ooling system					(0.302)***	0.0289	-0.402		0.4008
lo bathroom	base ou								
athroom				-1.242		0.2241	2.348		0.9128
No toilet	base ou								
oilet	-3.264		0.0368	-3.949	(2.400)	0.0189	4.133	(.690)***	0.9842
o kitchen facilities	base ou								
itchen facilities	0.198	(0.094)**	0.5493			0.5578	3.030	(0.307)***	
bservations	2,058								

of

Introduction	Data	LC Méthodology	Results and policy	Conclusion
			implications	

Results – 3 classes

	Class 1 Utility services poor					
		27,8 %				
	Coeff.	Std. Err.	Margin			
0.No access to water	base outc	ome	0.9143			
1.Access to water	-2.368	(1.345)*	0.0857			
0. No access to electricity	base outc	0.1851				
1.Access to electricity	1.482 (0.114)***		0.8149			
0.No cooling system	base outc	ome	1			
1.Cooling system	/ /		0			
0.No bathroom	base outc	ome	1			
1.Bathroom	/	/	0			
0.No toilet	base outc	ome	0.9632			
1.Toilet	-3.264	(0.235)***	0.0368			
0.No kitchen facilities	base outc	0.4507				
1.Kitchen facilities	0 .198	(0.094)**	0.5493			
Observations	2,058					

Profile of fuel poors :

- No access to water
- No Cooling system
- No Bathroom
- Less Toilet

Vulnerable individuals are our poor in the 2-class model and the richest are pretty the same

Access to water is more discriminating than access to electricity in defining utility services poverty \rightarrow What if we open one last class?

Introduction	Data	LC Méthodology	Results and policy	Conclusion
			implications	

Results – 4 classes

	Class	1 Utility serv	vices poor	Class	2 Utility se	rvices	Class 3 Utility services vulnerable Class 4 Utility services -sufficient				sufficient	
		20,1 %		١	vulnerable	1		2			39,6 %	
					13 %			27,3 %				
	Coeff.	Std. Err.	Margin	Coeff.	Std. Err.	Margin	Coeff.	Std. Err.	Margin	Coeff.	Std. Err.	Margin
0.No access to water	base ou	tcome	0.8744	base outc	ome	.6344	base outco	ome	0	base outco	ome	0
1.Access to water	-1.940	(0.491)***	0.1256	-0.551	(4.266)	.3656	30.936	(0.494)***	1	31.973	(0.278)***	1
0. No access to electricity	base ou	tcome	0.2495	base outc	ome	.0272	base outco	ome	.0101	base outco	ome	.0022
1.Access to electricity	1.101	(0.602)*	0.7505	3.577	(3.448)	.9728	4.584	(0.899)***	.9899	6.120	(1.108)***	.9978
0.No cooling system	base ou	tcome	1	base outc	ome	.9830	base outcome		.9734	base outcome		.5966
1.Cooling system	-	-	0	-4.055	(1.548)* **	.0170	-3.602	(0.365)***	.0266	-0.391	(0.120)***	.4034
0.No bathroom	base ou	tcome	1	base outc	ome	1	base outco	ome	.74289	base outco	ome	.0746
1.Bathroom	-	-	0	-17.730	(1.704)* **	0	-1.061	(0.443)**	.2571	2.518	(1.011)**	.9254
0.No toilet	base ou	tcome	1	base outc	ome	.8621	base outco	ome	.9906	base outco	ome	.0193
1.Toilet	-	-	0	-1.833	(2.256)	.1379	-4.659	(4.877)	.0094	3.931	(1.133)***	.9807
0.No kitchen facilities	base ou	tcome	0.6187	base outc	ome	.0905	base outco	ome	.4809	base outco	ome	.0487
1.Kitchen facilities	-0.484	(1.266)	0.3813	2.308	(1.465)	.9095	0.076	(0.748)	.5191	2.971	(0.296)***	.9513
Observations	2,058											

Introduction	Data	LC Méthodology	Results and policy	Conclusion
			implications	

Results	-4 c	lasses
---------	------	--------

It is mainly the vulnerable who are divided into 2 categories: scale of vulnerability?

	Class 2 Utility	y services v	ulnerable 1	Class 3 Utility services vulnerable 1		
	13 %				27,3 %	
	Coeff	Std Err	Margin	Cooff	Std Err	Margin
0.No access to water	base outcome	Stu. LII.	.6344	base outco	me	0
1.Access to water	-0.551	(4.266)	.3656	30.936	(0.494)***	1
0. No access to electricity	base outcome	2	.0272	base outco	me	.0101
1.Access to electricity	3.577	(3.448)	.9728	4.584	(0.899)***	.9899
0.No cooling system	base outcome	2	.9830	base outco	me	.9734
1.Cooling system	-4.055	(1.548)** *	.0170	-3.602	(0.365)***	.0266
0.No bathroom	base outcome	2	1	base outco	me	.74289
1.Bathroom	-17.730	(1.704)** *	0	-1.061	(0.443)**	.2571
0.No toilet	base outcome	9	.8621	base outco	me	.9906
1.Toilet	-1.833	(2.256)	.1379	-4.659	(4.877)	.0094
0.No kitchen facilities	base outcome	2	.0905	base outco	me	.4809
1.Kitchen facilities	2.308	(1.465)	.9095	0.076	(0.748)	.5191
Observations						

Introduction	Data	LC Méthodology	Results and policy implications	Conclusion				
Results – comparisons utility poors and monetary poors (4								
classes mod	lel)							

	Monetar	y poor 60	Income	Total		
	No		Yes		Euros	
		%		%		
Class1 – Utility services poor 1	96	33.2	193	66.7	2657	289
Class2 – Vulnerable 1	98	37.6	162	62.3	2690	260
Class3 – Vulnerable 2	405	61.5	280	42.5	4197	658
Class 4 – No poor 4	708	85.9	116	14.0	12340	824
Total	1307		751			2058

Scale of utility services poverty confirmed by the income average but, utility services poors are not necessary monetary poors

➔ public policies that aim to support only the monetary poors do not solve all the problems of access to utility services

Introduction	Data	LC Méthodology	Results and policy	Conclusion
			implications	

Conclusion

Policy recommendations:

Policies could be implemented into 2 steps :

1/ To fight utility services poverty, priority to water access and sanitary facilities (fight disease to waste or stagnant water)

2/ Provide an electricity access for everyone

Policies should not be distributed according to income but to facilities access and living conditions

This methodology could be implemented in other countries

Thank you for your attention