The current and futur costs of tropical cyclones: a case study from La Réunion

ReNovRisk - Impact & Transfert Idriss Fontaine & Sabine Garabedian & Hélène Vérèmes Actes de la Recherche Ultra-Marine 2022

> Université de La Réunion Centre d'Economie et de Management de l'Océan Indien CEMOI

Introduction

Introduction

Motivation - I

- Tropical Cyclones (TC) are a natural destructive phenomena.
 - During the 2000-2009 period the cost of TC amounts to US\$ 466 billion worldwide. (EMDAT 2019)
- Surveys about the economics of natural disasters indicate that losses due to TC increase over time (Cavallo & Noy, 2011).
 - Trend mainly explained by economic and demographic growth (Botzen et al., 2019)
 - More people and assets are now located in exposed areas (e.g. the coastline). (Kellenberg & Mobarak, 2008)
- Global warming is likely to alter the frequency, the genesis, the spatial extent and the characteristics of the most extreme TC (Knutson et al., 2020).
 - What's about the losses due to TC?

Motivation - II

- La Réunion knew many **TC events** inducing important **losses**.
 - "1948", Jenny 1962, Firinga 1989, Dyna 2002.
 - No study investigating the risk of TC at the island level.
- Data limitation partly explains this lack of investigation.
 - No "significant" TC' events since 2002.

Question of the paper

How would the economic losses associated with tropical cyclones on La Réunion vary in a warmer climate?

Challenges

Methodological challenges are threefold:

- Historical data on TC cover a short period and high quality data are fairly recent.
 - Looking at past events is inappropriate since the most extreme events are uncommon from a statistical viewpoint.
 - Issue more acute when focusing on a small island.
- 4 Historical data observations alone are likely to be uninformative about the characteristics of TC in a future and warmer climate.
 - The variation in future costs of TC is a key indicator when engaging adaptation policies.
- The extent of the economic damage depends on the physical characteristics of TC as well as the spatial distribution of economic assets.
 - We need to proxy the repartition of economic activity at a detailed spatial level.

What we do

- We do not rely on historical data but on simulated (or synthetic)
 TC.
- We use synthetic TC obtained from two climate scenario :
 - For a climate environment **similar** to what have been **observed** during the **30** years.
 - 2 For a climate environment corresponding to an anticipated and median scenario of global warming.
- We proxy economic activity (or economic value) at a local level using night-light data obtained from satellite.
- We estimate the **losses** due to each TC of each scenario.
- We estimate the annual expected losses due to TC under both scenario.

Data

The spatial extent of economic activity - I

- We use **nighttime** satellite **images** from the the sensors of the Visible Infrared Imaging Radiometer Suite (VIIRS).
- We use daily nightlight data for 2018 and aggregate them to obtain annual average.
 - The "famous" black marble data of Roman et al. (2018)
- Very **high resolution** data : cells of about 500m of horizontal resolution (Reunion \approx 10,000 pixels).

The spatial extent of economic activity - II

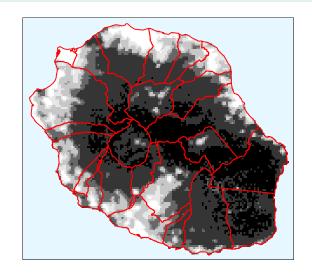


Figure – Mean value of daily night-light per pixel for La Réunion in 2018.

Synthetic TC - I

- Synthetic TC are obtained from Emanuel (2011)' methodology.
- Given large-scale meteorological variables derived from climate models and a high-resolution coupled ocean-atmosphere cyclonic system model, synthetic systems are randomly launched in space.
- This technique "downscales" the characteristics of TC, and allows to quantify the influence of climate on TC' activity.
 - The data allow us to obtain wind fields associated to each cyclonic system.
- We have 2,000 "current" TC and 2,000 "future" TC simulated by the CNRM-6 climate model and the median scenario of global warming RCP 8.5.
 - The current median scenario was the worst 10 or 15 years ago.

Synthetic TC - II

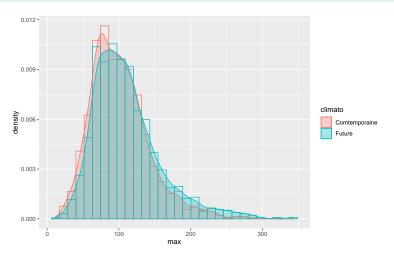


Figure – Contemporaneous and future averages of maximum wind speed per pixel.

Methodology

Methodology

From winds to damages... - I

We translate wind speed on pixel c from the cyclonic event i into damages using the **index** of **destruction** f_{ci} of **Emanuel** (2011) :

$$f_{ci} = \frac{v_{ci}^3}{1 + v_{ct}^3}$$
 with $v_{ci} = \frac{MAX (W_{ci} - \bar{W}, 0)}{W^* - \bar{W}}$. (1)

- \bar{W} : minimum wind speed value above which economic damages are observed. ($\bar{W}=93~{\rm km/h}$). W^* : threshold at with half of the economic value of a given cell c is destroyed ($W^*=270~{\rm km/h}$).
 - We lack strong evidence to pick the values of these two parameters.
- The damage function captures that below \bar{W} no significant damage could be observed together with damages increase non-linearly with wind speed.
 - For high wind levels, the fraction of economic loss cannot exceed 1.

Remark

Our damage function is theoretical, we are not aware of an the existence of an empirical damage function for La Réunion.

From winds to damages... - II

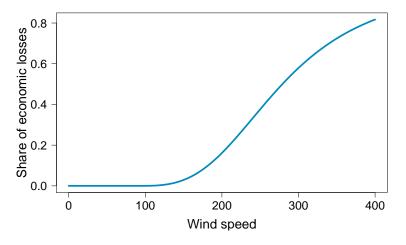


Figure – Index of the share of economic losses due to wind speed.

Underlying assumptions

- f_{ci} only captures **direct losses** (Emanuel, 2011).
- We only take into account **one hazard** associated to TC : the wind.
 - Other hazards (inundations, landslides...) are more difficult to model but are correlated with wind speed (even not perfectly).
 - Vast majority of insurance claim payments are due to wind speed rather than rainfall, landslides, or storm surges (CCR, 2020).
- We assume that pixels' sensitivity to wind speed is the same "today" and in the "future".
 - Our estimation can be seen as an upper bound because adaptation policies (if any) are likely to decrease the losses due to wind speed.
- We assume that the spatial distribution of economic activity is the same "today" and in the "future".
 - We do not forecast future economic growth.
 - Our estimation can be seen as a lower bound because future economic growth is likely to increase the economic value of exposed assets.

Aggregation

We derive total economic losses F_i at the island level for cyclonic event i, by applying the following formula :

$$F_i = \sum_{c=1}^{C} \frac{n I_c}{NL} \times f_{ci} \tag{2}$$

Where:

- *C* corresponds to the total number of cells characterizing La Réunion in terms of night light.
- nl_c is the average brightness value of cell c in 2018.
- $NL = \sum_{c=1}^{C} nl_c$ is the total "brightness" value observed in La Réunion in 2018

Results

A look on synthetic TC - I

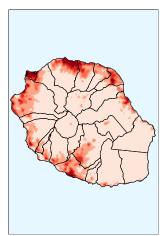
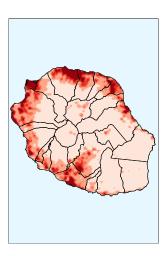

	Contemporaneous	Future	Δ in %
0/ 676 11 0 1	<u>'</u>		
% of TC with 0 damage	48.88	42.88	-12.27
Percentile 50%	0.00	0.00	-
Percentile 60%	0.00	0.01	
Percentile 70%	0.03	0.10	-
Percentile 75%	0.08	0.24	-
Percentile 80%	0.19	0.55	-
Percentile 90%	1.15	2.76	-
Percentile 95%	3.76	7.66	-
Percentile 99%	17.44	31.76	-
Percentile 100%	40.26	67.75	-
Mean	0.76	1.43	89.56
Standard deviation	3.20	5.33	_
Standard deviation Mean	4.21	3.73	_

Table – Summary statistics of TC losses generated by 2,000 contemporaneous and future cyclonic systems.

Sources: Black marble nightlight products of Roman et al. (2018) and authors' own calculation *Notes*: Damages ares expressed in percentage of the total brightness of La Réunion.

A look on synthetic TC - II



Future costs 0 to 5.000

Moving to annual statistics - I

- Previously, we compute the total cost per cyclonic event without considering the annual occurrence of TC.
 - Economic agents, especially insurers, rely on expected annual losses.
- **Hypothetical years** : drawing from a Poisson distribution a number *x* representing the **number** of TC events "attached" to that year.
 - ullet The parameter λ of the Poisson distribution correspond to the average number of cyclonic systems circulating around La Réunion.
- For each year, we randomly select (with replacement) the corresponding number of TC from the corresponding pool of TC.
 - We then **sum the total costs** from each selected TC.
- For both climate environment, we **repeat** the last steps 100,000 times.

Remark

Sensitivity analyses are conducted to consider different scenario.

Moving to annual statistics - II

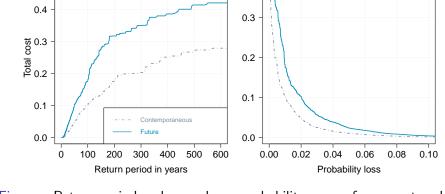

	Contemporaneous	Future	Δ in %
% years with 0 cost	85.80	84.20	-1.86
Percentile 80%	0.00	0.00	-
Percentile 90%	0.01	0.04	-
Percentile 95%	0.34	0.86	_
Percentile 99%	6.90	12.55	-
Percentile 100%	43.01	67.89	_
Mean	0.23	0.43	86.96
Standard deviation	1.82	3.05	_
Standard deviation Mean	7.91	7.09	_
Return period of damage >0	7.00	6.00	_

Table – Summary statistics of annual cost generated 100,000 years of simulation of contemporaneous and future climates.

Sources: Black marble nightlight products of Roman et al. (2018) and authors' own calculation *Notes*: Damages ares expressed in percentage of the total brightness of La Réunion.

Moving to annual statistics - II

0.5

0.4

Figure – Return period and exceedance probability curves for current and future climate.

Sources: Black marble night light data Roman et al. (2018), synthetic tropical cyclones Emanuel (2011) and authors' own calculations.

Sensitivy analyses

- **1** Changing λ .
 - Incertainty about the future exposition of La Réunion.
 - Some evidence suggests that in a warmer climate environement the total number of TC would decrease but that most extreme events could be more intense: La Réunion would be less exposed to TC.
 - Others evidence suggests that global warming could modify the genesis and path of TC so that previously less exposed areas could be more exposed in the future: La Réunion would be more exposed to TC.
- 2 Changing sequentially \bar{W} and W^* .
 - Increasing W^* and \bar{W} in a future environment implicitly assumes that adaptation behaviour take place. More ?

Conclusion

Concluding remarks

- Relying on synthetic data and estimating economic value on the ground by nightlight, we estimate the current and the future cost of TC.
- Direct losses associated to TC are likely to increase in a future and warmer climate environment.
 - By around 90%.
- This suggests that policy makers should engage in strong policies to reduce the costs due to TC.
- The approach of the present paper can be improve in many ways by considering different kinds of "objects" and other damage functions.
 - A stimulating area of improvements would be to construct an empirical damage function for La Réunion.
 - What's about multi-hazards modeling?

Conclusion

Thank you for your attention!

Annexes

Changing λ

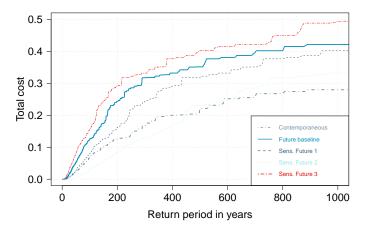


Figure – Return periods for different calibrations of λ .

Notes : In the scenario labeled "Rob Future 1," the parameter λ is set to 0.375. In the scenario labeled "Rob Future 2," the parameter λ is set to 0.175.

Increasing W^*

	Contemporaneous	Future	Δ in %
% years with 0 cost	85.80	84.23	-1.83
75%	0.00	0.00	_
80%	0.00	0.00	_
90%	0.00	0.02	_
95%	0.19	0.48	_
99%	3.99	7.52	_
100%	28.61	54.11	_
Mean	0.14	0.27	92.86
Standard deviation	1.15	2.06	_
<u>Standard deviation</u> Mean	8.21	7.63	_
Return period of damage >0	5.00	4.00	-

Table – Robustness - Summary statistics of annual cost generated with 100,000 years of simulation of contemporaneous and future climates with $W^* = 320$.